Skip to content

Your cart is empty

Continue shopping

Your cart

Loading...

Estimated total

€0,00 EUR

Tax included and shipping and discounts calculated at checkout

Electronics & Antennas for Ham Radio

  • New
  • Hot
  • HotSpot
    • VHF
    • UHF
  • Repeater
    • ON0ORA
  • BalUn/UnUn
    • Balun
    • Unun
  • Isolators
    • Line Isolators
    • Surge Protection
  • Filters
    • VHF-UHF Filter
    • Line Filters
  • Antenna
    • HF Active RX Antenna
    • HF End Fed Wire Antenna
    • HF Verticals - V-Dipoles
    • HF Doublets - Inverted Vs
    • UHF Antenna
    • VHF Antenna
    • Dualband VHF-UHF
    • Grounding
    • Masts
    • Guy Ropes & Accessories
    • GPS Antenna
    • Mobile Antenna
    • Handheld Antenna
    • ISM Antenna 433/868
    • Antenna Tools
    • Anti-Corrosion Lubricants
    • Dummy Load
  • Coax
    • Coaxial Seal
    • Coax Connectors
    • Panel Mount Connectors
    • Coax Adaptors
    • Coax Tools
    • Coax Cable
    • Coax Surge protection
    • Jumper - Patch cable
  • 13.8 V
    • DC-DC
    • AC-DC
    • Powerpole
    • 13.8 V Cable
  • PA
    • VHF Power Amplifiers
    • UHF Power Amplifiers
  • Parts
    • Ferrite
    • Pi
    • Routers
  • PCB
  • SDR
  • APRS
  • KB
    • Product Whitepapers
    • Knowledge Base
    • Transmit Antennas
    • Baluns and Ununs
    • Receive Antennas & Arrays
    • Technical Deep Dives
    • Debunking Myths
    • Transmission lines
    • Radio Interference
    • Grounding and safety
    • Ham Radio 101
    • Calculators
    • %λΦ#@!Ω
  • ON6URE
    • on the road ...
    • collaborations ...

Country/region

  • Belgium EUR €
  • Germany EUR €
  • Italy EUR €
  • Sweden EUR €
  • Austria EUR €
  • Belgium EUR €
  • Bulgaria EUR €
  • Canada EUR €
  • Croatia EUR €
  • Czechia EUR €
  • Denmark EUR €
  • Estonia EUR €
  • Finland EUR €
  • France EUR €
  • Germany EUR €
  • Greece EUR €
  • Hungary EUR €
  • Ireland EUR €
  • Italy EUR €
  • Latvia EUR €
  • Lithuania EUR €
  • Luxembourg EUR €
  • Netherlands EUR €
  • Poland EUR €
  • Portugal EUR €
  • Romania EUR €
  • Slovakia EUR €
  • Slovenia EUR €
  • Spain EUR €
  • Sweden EUR €
  • Switzerland EUR €
  • United Kingdom EUR €
  • YouTube
RF.Guru Logo
  • New
  • Hot
  • HotSpot
    • VHF
    • UHF
  • Repeater
    • ON0ORA
  • BalUn/UnUn
    • Balun
    • Unun
  • Isolators
    • Line Isolators
    • Surge Protection
  • Filters
    • VHF-UHF Filter
    • Line Filters
  • Antenna
    • HF Active RX Antenna
    • HF End Fed Wire Antenna
    • HF Verticals - V-Dipoles
    • HF Doublets - Inverted Vs
    • UHF Antenna
    • VHF Antenna
    • Dualband VHF-UHF
    • Grounding
    • Masts
    • Guy Ropes & Accessories
    • GPS Antenna
    • Mobile Antenna
    • Handheld Antenna
    • ISM Antenna 433/868
    • Antenna Tools
    • Anti-Corrosion Lubricants
    • Dummy Load
  • Coax
    • Coaxial Seal
    • Coax Connectors
    • Panel Mount Connectors
    • Coax Adaptors
    • Coax Tools
    • Coax Cable
    • Coax Surge protection
    • Jumper - Patch cable
  • 13.8 V
    • DC-DC
    • AC-DC
    • Powerpole
    • 13.8 V Cable
  • PA
    • VHF Power Amplifiers
    • UHF Power Amplifiers
  • Parts
    • Ferrite
    • Pi
    • Routers
  • PCB
  • SDR
  • APRS
  • KB
    • Product Whitepapers
    • Knowledge Base
    • Transmit Antennas
    • Baluns and Ununs
    • Receive Antennas & Arrays
    • Technical Deep Dives
    • Debunking Myths
    • Transmission lines
    • Radio Interference
    • Grounding and safety
    • Ham Radio 101
    • Calculators
    • %λΦ#@!Ω
  • ON6URE
    • on the road ...
    • collaborations ...
Cart

EFHW Inverted L: How Clay Soil Affects Your Antenna

Related reading:
The Back-to-Back EFHW UNUN Transformer Measurement Myth

When hams ask, "I have clay soil — will that affect my antenna?" the short answer is: yes, and mostly in a good way.

Here’s how clay-rich European soils influence an EFHW Inverted L’s feedpoint impedance, radiation efficiency, and capacitive coupling.

Ground Isn’t Just Ground: Lossy vs. Conductive

Earth isn’t a perfect mirror; it’s a variable, lossy medium that completes the RF return path.

  • Clay-rich, moist soil: moderate–high conductivity, lower loss.
  • Dry sand/rock: poor conductivity, higher loss.

This affects:

  • Return current losses (vertical section efficiency)
  • Capacitive coupling (horizontal section stability)

Vertical Section: Better Return Over Clay

The vertical leg behaves like a shortened monopole. It needs a return path through ground currents.

Clay soil provides a lower-resistance return, reducing loss and improving efficiency. Feedpoint impedance stays closer to ideal, with less heat loss.

Horizontal Section: Stronger Capacitive Coupling

The horizontal wire couples capacitively with ground. Moist clay enhances this coupling, which:

  • Stabilises impedance
  • Improves pattern consistency
  • Reduces sensitivity to height or nearby objects

A low horizontal wire over clay often behaves more predictably than the same antenna over dry sand.

Feedpoint Height: More Forgiving Over Clay

Over clay soil, EFHW feedpoints are less sensitive to small height changes:

  • 1–2 m AGL feedpoint is fine without mismatch issues.
  • Raising to ~1.5–2.5 m can still smooth impedance and reduce CMC pickup.

Clay soil essentially broadens your margin for error.

It’s a System, Not Just a Wire

Antenna + feedline + ground = one system. Changing the soil type under part of the antenna changes the SWR curve, pattern, and tuning. That’s why identical EFHWs behave differently on different sites.

Final Thought

Over clay soil you gain:

  • Better efficiency from the vertical section
  • More stable matching from the horizontal section
  • Slightly lower takeoff angle — useful for DX
An antenna isn’t magic. It’s physics — and the ground is part of that system. With clay soil, the system works with you, not against you.

Mini-FAQ

  • Does clay soil improve EFHW efficiency? — Yes. Moist clay improves ground return, lowering resistance and loss.
  • Will feedpoint height matter as much? — Less so. Clay makes impedance more stable, but 1.5–2.5 m AGL is still good practice.
  • Does soil type change SWR curves? — Absolutely. Identical antennas behave differently depending on soil conductivity and dielectric constant.

Interested in more technical content? Subscribe to our updates for deep-dive RF articles and lab notes.

Questions or experiences to share? Feel free to contact RF.Guru.

Joeri Van Dooren, ON6URE – RF engineer, antenna designer, and founder of RF.Guru, specializing in high-performance HF/VHF antennas and RF components.

Subscribe here to receive updates on our latest product launches

  • YouTube
Payment methods
  • Bancontact
  • Maestro
  • Mastercard
  • PayPal
  • Visa
© 2025, RF Guru Powered by Shopify
  • Refund policy
  • Privacy policy
  • Terms of service
  • Contact information
  • News
  • Guru's Lab
  • Press
  • DXpeditions
  • Fairs & Exhibitions
  • Choosing a selection results in a full page refresh.
  • Opens in a new window.
Purchase options
Select a purchase option to pre order this product
Countdown header
Countdown message


DAYS
:
HRS
:
MINS
:
SECS